3 Hours/Week, 3 Credits

What is Artificial Intelligence: The AI problems, The underlying assumption, What is an AI technique. Problems, Problem spaces and Search: Defining the problem as a state space search, Production system, Problem characteristics. Heuristics Search Techniques: Generate and Test, Hill climbing, Best First Search, Problem Reduction, Constraint Satisfaction, Means-Ends Analysis. Knowledge Representation Issues: Representation and Mappings, Approaches to knowledge Representation, Issues in Knowledge representation. Using Predicate logic: Representing simple facts in logic, Representing Instance and Isa relationships, Computable functions and Predicates, Resolution. Representing Knowledge using Rules: Procedural versus Declarative Knowledge, Logic Programming, Forward versus Backward Reasoning, Matching. Game playing: Overview, The Mimimax Search Procedure, Adding Alpha-Beta cutoffs, Additional refinements, iterative Deepening, Planning: Overview, An example Domain: The Blocks World, Components of a planning system, Goal stack planning, Understanding: What is Understanding, What makes Understanding hard, Understanding as constraint satisfaction. natural Language Processing: Introduction, Syntactic Processing, Semantic Analysis, Discourse and Pragmatic Processing. Expert systems: representing and using domain knowledge, Expert system shells explanation, Knowledge Acquisition. AI Programming Language: Python, Prolog, LISP